
Annals of Fuzzy Mathematics and Informatics

Volume x, No. x, (mm 201y), pp. 1–xx

ISSN: 2093–9310 (print version)

ISSN: 2287–6235 (electronic version)

http://www.afmi.or.kr

@FMI
c© Research Institute for Basic

Science, Wonkwang University

http://ribs.wonkwang.ac.kr

Theoretical refinements and practical implications
of θβ-ideal rough approximations

M. K. El-Bably, M. A. El-Gayar, A. S. Nawar, R. A. Hosny

Received 25 April 2025; Revised 9 May 2025; Accepted 22 May 2025

Abstract. This study advances both the theoretical and practical
aspects of θβ-ideal approximation spaces by refining definitions, introduc-
ing new results, and proposing a comprehensive algorithm for real-world
applications. By systematically addressing inaccuracies in previous formu-
lations, we reinforce the foundational principles of θβ-ideal rough set mod-
els, ensuring greater consistency and scientific rigor while offering essential
complementary results. Furthermore, our approach generalizes existing
methodologies, including those developed by Abd El-Monsef et al. (2014)
and M. Hosny (2020), thereby enhancing both accuracy and applicabil-
ity. The proposed mathematical algorithm offers a robust computational
framework adaptable to various domains, such as medicine, chemistry, and
economics, facilitating improved decision-making processes. These contri-
butions establish a stronger theoretical foundation while expanding the
practical relevance of θβ-ideal approximation spaces.
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1. Introduction

The philosophy of rough sets [1] addresses challenges related to uncertainty,
with its initial foundations relying on equivalence relations. However, this restric-
tion limited the broader applicability of the approach. To overcome this limitation,
rough set models were extended to incorporate general binary relations instead of
equivalence relations, enabling significant advancements in the field [2, 3, 4, 5, 6]
and the development of rough neighborhood-based approaches [7, 8, 9, 10].
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Topology and its extensions have also been utilized in the study and generaliza-
tion of this theory, as seen in [11, 12, 13, 14, 15], and in presenting various real-life
applications across multiple fields [7, 8, 16, 17]. Topological structures encompass a
rich array of concepts and results, offering applications in diverse areas, as discussed
in [18, 19, 20, 21, 22]. These structures have been applied within various theoretical
frameworks, including covering-based soft rough sets [11, 23, 24], fuzzy set theory
[25, 26, 27, 28], and extended rough set theories [29, 30, 31, 32].

On the other hand, in recent years many papers and proposals have been pub-
lished in various fields, such as cluster soft sets and cluster soft topologies [33],
r-fuzzy soft δ-open sets [34], and soft topological spaces with applications [35, 36].
Additionally, fuzzy sets have been studied in [37, 38, 39]. Additionally, topology
and its extensions have been widely applied in different contexts, as evidenced by
studies [16, 40, 41, 42].

A notable contribution came in 2007 when Abo Khadra et al. [43] introduced
a topological framework based on the concepts of right and left neighborhoods [9].
Their approach provided a direct method for constructing a topology from binary
relations, bypassing the need for a base or subbase. This innovative perspective
significantly expanded the applicability of rough set theory within a topological
framework. This methodology laid the groundwork for El-Bably’s Master’s the-
sis [15], which further investigated and developed the concept of near-open sets in
rough set theory by introducing additional topological tools to enhance its practical
applications. In this framework, a topology τ on a universe X is defined as:

τ = {A ⊆ X : ∀p ∈ A, N(p) ⊆ A} ,

where N(p) denotes the neighborhood of an element p in X. This approach has
been employed in various studies to extend topological structures within rough set
theory, thereby enriching the field with new tools and methodologies.

In 2014, Abd El-Monsef et al. [44] expanded upon the methodology of Abo
Khadra et al. by introducing the concept of a j-Neighborhood Space (j-NS).
This innovation advanced neighborhood-based rough set theory by incorporating
new types of neighborhoods formed through intersections and unions of right and
left neighborhoods, as initially described by Yao [9] (who constructed them from
after and fore sets [45]), as well as minimal neighborhoods introduced by Allam et
al. [7, 46]. These developments led to the establishment of eight distinct neighbor-
hood types, offering a versatile framework for generalizing Pawlak’s rough set model
without imposing restrictive relational assumptions. The j-NS framework has since
influenced numerous studies, broadening its application to diverse topological struc-
tures within rough set theory.

In 2021, El-Sayed et al. [47] introduced the concept of initial-neighborhoods,
derived from right neighborhoods and defined as:

N i
r(p) = {q ∈ X : Nr(p) ⊆ Nr(q)},
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where Nr(p) denotes the right neighborhood of p ∈ X. They demonstrated the
utility of initial neighborhoods in rough set theory and their capacity to address
real-world challenges, such as the COVID-19 pandemic, through generalized nano-
topology. Concurrently, Abu-Gdairi et al. [48] introduced the dual concept of basic-
neighborhoods, defined as:

Nb
r (p) = {q ∈ X : Nr(q) ⊆ Nr(p)}.

The relationship between these neighborhoods was clarified in [44] as:

N i
r(p) ∩Nb

r (p) = N c
r (p),

where N c
r (p) represents the core neighborhood of p, as proposed in [41] and ex-

tended in [40, 42].

El-Gayar et al. [49] and Taher et al. [50, 51] conducted an in-depth analysis
of the relationships between topologies generated by these neighborhoods and their
corresponding approximations. Their work highlighted the significant role of these
approximations in decision-making contexts, particularly in medical applications.
Recently, El-Bably et al. [52] extended the concept of initial-neighborhoods by intro-
ducing the notion of maximal neighborhoods [53]. Building on this foundation,
they developed new approximations for rough sets. Their methodology involved an
innovative model consisting of 12 distinct types of approximations, which was suc-
cessfully applied to a notable medical application for diagnosing COVID-19 variants
using a topology-based framework. Additionally, R. A. Hosny et al. [54] introduced
a new model based on the topological concept of ”Primal approximation spaces.” It
is worth noting that both studies fundamentally rely on the concept of j-NS.

In 2022, Nawar et al. [55] introduced, for the first time, the concept of θβ-ideal
approximation spaces, marking a significant contribution. Their work [55] pre-
sented θβ-open sets in rough set theory and their applications. It is important to note
that the methodologies they proposed differ entirely from any similar concepts intro-
duced in subsequent papers bearing the same name. They employed the topological
notion of θβ-open sets within the j-NS (for each j ∈ J = {r, `, 〈r〉, 〈`〉, u, i, 〈u〉, 〈i〉})
framework to generalize the work of Abd El-Monsef et al. [44]. Furthermore, they
proposed the concept of θβj-ideal approximation spaces, extending the approaches
of both Abd El-Monsef et al. [44] and M. Hosny [56], with subsequent refinements
in [57]. To illustrate the accuracy and practical relevance of θβ-ideal rough sets,
Nawar et al. presented a chemistry application. Their findings demonstrated greater
precision and effectiveness compared to existing methods, thereby showcasing the
potential of their approach.

The original paper [55] presented two approaches for generalization:

(1) First Approach:
The first approach introduced the concept of θβj-approximation spaces as
a generalization of the methods presented by Abd El-Monsef et al. (2014)
[44]. Specifically, the topologies generated from j-NS were generalized by
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applying the class of θβj-open sets to the topologies τj using the closure
(clj) and interior (intj) operators of these topologies.

(2) Second Approach:
The second approach involved using θβj-open sets via ideals I to generate
I-θβj-approximation spaces. This method generalizes the topologies τIj ,
which are constructed from the topologies τj and ideals I, as presented by
M. Hosny (2020) [56] and later corrected by R. A. Hosny et al. (2022) [57].
This approach employs the closure (clIj ) and interior (intIj ) operators of τIj ,
rather than those of τj , to induce the class of I-θβj-open sets as an extension
of the topologies τIj .

However, the original work contained some typographical errors that require cor-
rection for scientific clarity. One such error occurred in Definition 4.1, where the
index I was inadvertently omitted from the operators. This omission resulted in an
inconsistent definition of the “I-θβj-open set.”

In this article, we address these errors and present the necessary corrections. We
clarify the identified error, provide the correct formulation, and reinforce the ac-
curate concept initially presented in [55]. This clarification is supported by results
and examples from the original research, ensuring consistency and correctness in the
theoretical framework. Additionally, we present some essential and complementary
results to the previous paper to offer a deeper understanding of its findings. We
also introduce several new results and properties that both benefit rough set the-
ory and expand its applications, supported by illustrative examples. Furthermore,
we propose a new algorithm that facilitates the application of these methods in
decision-making problems and in the development of additional real-life applications
that require large-scale data. This study enriches the robustness and applicability
of θβ-ideal approximation spaces, contributing to advancements in fields such as
decision-making, medicine, and data analysis.

The organization of this paper is as follows: Section 2 provides a review of founda-
tional concepts, methodologies, and key results pertinent to this study, including a
comparison with previous approaches. Section 3 addresses the typographical errors
identified in [55] and presents the corresponding corrections. Section 4 introduces
new results and examines the relationships between θβ-ideal rough sets and other
related methods. Finally, Section 5 presents a mathematical algorithm intended to
serve as a foundational framework for future applications.

2. Preliminaries

This section provides an overview of the fundamental concepts and their implica-
tions, serving as the foundation for the current study.

Definition 2.1 ([58]). A non-empty class I of subsets of a set X is called an ideal
on X, if it satisfies the following conditions:

(i) if A ∈ I and B ⊆ A, then B ∈ I (hereditary),
(ii) if A ∈ I and B ∈ I, then A ∪B ∈ I (finite additivity).
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Definition 2.2 ([7, 9, 43, 44, 45, 46]). Let R be an arbitrary binary relation on
a non-empty finite set X. For each x ∈ X, the j-neighborhoods of x (denoted by
Nj(x) for all j ∈ {r, `, 〈r〉, 〈`〉, i, u, 〈i〉, 〈u〉}) are defined as follows:

(i) r-neighborhood: Nr(x) = {y ∈ X : xRy},
(ii) `-neighborhood: N`(x) = {y ∈ X : yRx},
(iii) 〈r〉-neighborhood: N〈r〉(x) =

⋂
x∈Nr(y)

Nr(y),

(iv) 〈`〉-neighborhood: N〈`〉(x) =
⋂
x∈N`(y)

N`(y).

(v) i-neighborhood: Ni(x) = Nr(x) ∩N`(x),
(vi) u-neighborhood: Nu(x) = Nr(x) ∪N`(x),
(vii) 〈i〉-neighborhood: N〈i〉(x) = N〈r〉(x) ∩N〈`〉(x),
(viii) 〈u〉-neighborhood: N〈u〉(x) = N〈r〉(x) ∪N〈`〉(x).

Definition 2.3 ([44]). Let R be an arbitrary binary relation defined on a non-empty
finite set X and let ψj : X → P (X) be a mapping that assigns a j-neighborhood
to each x ∈ X for all j ∈ J = {r, `, 〈r〉, 〈`〉, u, i, 〈u〉, 〈i〉}, where P (X) denotes the
power set of X. Then the triple (X,R,ψj) is referred to as a j-neighborhood space
(briefly, j-NS).

Theorem 2.4 ([44]). If (X,R,ψj) is a j-NS, then for each j ∈ J , the family

τj = {A ⊆ X : ∀ p ∈ A, Nj(p) ⊆ A}

forms a topology on X.

Definition 2.5 ([44]). Let (X,R,ψj) be a j-NS. A subset A ⊆ X is said to be a
j-open set, if A ∈ τj . The complement of a j-open set is called a j-closed set. The
class of all j-closed sets is given by

Γj = {F ⊆ X : F c ∈ τj},

where F c represents the complement of F in X.

Definition 2.6 ([44]). Let (X,R,ψj) be a j-NS and let A ⊆ X. For every j ∈ J , the
j-lower approximation, j-upper approximation, j-boundary region and the j-accuracy
of approximations of A are defined as follows:

(i) the j-lower approximation: Rj(A) =
⋃
{G ∈ τj : G ⊆ A} = intj(A),

where intj(A) represents the j-interior of A,

(ii) the j-upper approximation: Rj(A) =
⋂
{F ∈ Γj : F ⊇ A} = clj(A),

where clj(A) represents the j-closure of A,

(iii) the j-boundary region: Bj(A) = Rj(A)−Rj(A),

(vi) the j-accuracy of approximation: σj(A) =
|Rj(A)|
|Rj(A)| ,

where |Rj(A)| 6= 0.

Definition 2.7 ([44]). Suppose that (X,R,ψj) is a j-NS, and let A ⊆ X. For each
j ∈ J , the subset A is called a j-exact set, if

Rj(A) = Rj(A) = A.

Otherwise, A is called a j-rough set.
5
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Theorem 2.8 ([56, 57]). Let (X,R,ψj) be a j-NS, A ⊆ X, and let I be an ideal
on X. For each j ∈ J , the class

τIj = {A ⊆ X : ∀ p ∈ A, Nj(p) ∩Ac ∈ I}
forms a topology on X. Here, Ac represents the complement of A.

Theorem 2.9 ([56, 57]). Let (X,R,ψj) be a j-NS and let I be an ideal on X. Then

τj ⊆ τIj , for each j ∈ J.

Definition 2.10 ([56, 57]). Let (X,R,ψj) be a j-NS and let I be an ideal on X.
A subset A ⊆ X is called an Ij-open set, if A ∈ τIj . The complement of an Ij-open
set is called an Ij-closed set. The family of all Ij-closed sets is given by:

ΓIj = {F ⊆ X : F c ∈ τIj }.

Definition 2.11 ([56, 57]). Let (X,R,ψj) be a j-NS, let I be an ideal on X and let
A ⊆ X. For each j ∈ J , the Ij-lower approximation, Ij-upper approximation, Ij-
boundary region and Ij-accuracy of the approximations of A are defined, respectively,
as follows:

(i) the Ij-lower approximation: RIj (A) =
⋃
{O ∈ τIj : O ⊆ A} = intIj (A),

where intIj (A) represents the I-j-interior of A,

(ii) the Ij-upper approximation: R
I
j (A) =

⋂
{F ∈ ΓIj : F ⊇ A} = clIj (A),

where clIj (A) represents the I-j-closure of A,

(iii) the Ij-boundary region: BIj (A) = R
I
j (A)−RIj (A),

(iv) the Ij-accuracy of the approximation: σIj (A) =
|RI

j (A)|
|RI

j (A)|
, where |RIj (A)| 6= 0.

Nawar et al. successfully utilized the topological concept of the “θ-closure op-
erator,” originally introduced by Velicko in [59], within the framework of rough
sets. They specifically employed the interior (intj) and closure (clj) operators of the
topologies generated by j-NS to define a novel class of near-open sets, referred to as
“θβj-open sets.” This approach extended Pawlak’s rough set theory and led to the
development of generalized rough sets, termed “θβj-rough sets,” as formally defined
below.

Definition 2.12 ([55]). Let (X,R,ψj) be a j-NS and let A ⊆ X. For each j ∈ J ,
the θj-closure of A is defined by

clθj (A) = {x ∈ X : for every G ∈ τj with x ∈ G, A ∩ clj(G) 6= ∅}.

Moreover, A is called θj-closed, if A = clθj (A). The complement of a θj-closed set is
said to be θj-open.

Note:
intθj (A) = X \ clθj (X \A).

Definition 2.13 ([55]). Let (X,R,ψj) be a j-NS and let A ⊆ X. A subset A is
called a θβj-open set if

A ⊆ clj

[
intj

(
clθj (A)

)]
for each j ∈ J.

6
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A subset A is called a θβj-closed set, if its complement is a θβj-open set. The
family of all θβj-open sets and θβj-closed sets is denoted by θβjO(X) and θβjC(X),
respectively.

Definition 2.14 ([55]). Let (X,R,ψj) be a j-NS and let A ⊆ X. Then the
θβj-lower approximation, θβj-upper approximation, θβj-boundary region and θβj-
accuracy of the approximations of A are defined, respectively, as follows:

Rθβj (A) =
⋃
{G ∈ θβjO(X) : G ⊆ A} (the θβj-interior of A),

R
θβj

(A) =
⋂
{F ∈ θβjC(X) : F ⊇ A} (the θβj-closure of A),

Bθβj (A) = R
θβj

(A)−Rθβj (A),

σθβj (A) =
|Rθβj (A)|
|Rθβj

(A)|
, where |Rθβj

(A)| 6= 0.

3. Some corrections to θβ-ideal approximation spaces

In our original article [55], we introduced the concept of “θβj-Ideal Approximation
Spaces” by applying θβj-open sets to the topologies τIj . These generalized rough

sets were constructed using the interior operator (intIj ) and closure operator (clIj )

derived from τIj , thereby extending Pawlak’s rough set theory [1] and its subsequent
enhancements, as discussed in [2, 7, 9, 15, 43, 44, 56, 57]. However, the original work
contained typographical errors that require correction for scientific clarity.

One typographical error occurred in Definition 4.1, where the index I was inad-
vertently omitted from the operators. This omission led to an inconsistent definition
of the “I-θβj-open set.”

In this section, we address and rectify these issues. The main corrections are
outlined below:

(1) Definition 4.1 (on page 2488) contained an error due to the omission of the
index I in the operators. The corrected form, now presented as Definition
3.1, includes the omitted index I to ensure consistency with the intended
meaning and proper formulation.

(2) Proposition 4.1 (on page 2488): The proof of this proposition essentially re-
quires a lemma (see Lemma 3.2) to be properly illustrated. To ensure com-
pleteness, we present this lemma below as a preliminary (or complementary)
result that establishes the relationship between the topologies generated by
ideals, τIj (originally introduced by M. Hosny in [56] and later refined by R.
A. Hosny et al. in [57]), and the class of I-θβj-open sets.

(3) Example 5.1 (on pages 2492 and 2493) contained typographical errors, which
have now been corrected in the current paper. These errors do not affect
the analysis or the conclusions presented in the table.

Corrected Definition 4.1 of [55]:

Definition 3.1. Let (X,R,ψj) be a j-NS, and let I be an ideal on X. A subset
A ⊆ X is called an I-θβj-open set, if

A ⊆ clIj

[
intIj

(
cl∗θj (A)

)]
for each j ∈ J.

7
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The complement of an I-θβj-open set is referred to as an I-θβj-closed set. The
family of all I-θβj-open sets (resp. I-θβj-closed sets) is denoted by I-θβjO(X)
(resp. I-θβjC(X)).

Note:

cl∗θj (A) = A∪A∗θj , where A∗θj =
{
x ∈ X : A∩clIj (G) /∈ I, ∀G ∈ τIj with x ∈ G

}
.

Essential Lemma for Proposition 4.1 of [55]: We provide the following lemma
to establish the relationship between the topology τIj and the class of I-θβj-open
sets:

Lemma 3.2. Let (X,R,ψj) be a j-NS, let I be an ideal on X and let τIj be the
topology on X generated by I. Then

τIj ⊆ I-θβrO(X).

Proof. Let A ∈ τIj . By definition, we have

(3.1) A = intIj (A).

From the definition of cl∗θj (A), it follows that

A ⊆ cl∗θj (A),

which implies

intIj (A) ⊆ intIj

(
cl∗θj (A)

)
.

Accordingly, by (3.1), we obtain

A ⊆ intIj

(
cl∗θj (A)

)
,

which further implies

clIj (A) ⊆ clIj

[
intIj

(
cl∗θj (A)

)]
.

Since, as noted in [56, 57], we have A ⊆ clIj (A) for every A ∈ τIj , it follows that

A ⊆ clIj

[
intIj

(
cl∗θj (A)

)]
.

Thus we conclude that A ∈ I-θβrO(X). �

Remark 3.3. As demonstrated in the following example (Example 3.4), the con-
verse of Lemma 3.2 does not hold in general.

Example 3.4. According to Example 4.1 of [55], consider

X = {a, b, c, d, e},
the binary relation

R = {(a, a), (a, e), (b, a), (b, c), (b, d), (b, e), (c, c), (c, d), (d, c), (d, d), (e, e)},
and the ideal

I = {∅, {a}, {c}, {a, c}}.
Then the right neighborhoods are:

Nr(a) = {a, e}, Nr(b) = {a, c, d, e}, Nr(c) = Nr(d) = {c, d}, Nr(e) = {e}.
8
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Accordingly, the family I-θβrO (X) is given by:
I-θβrO (X) = {X,∅, {b} , {d} , {e} , {a, b} , {a, e} , {b, c} , {b, d} , {b, e} , {c, d} ,
{d, e} , {a, b, c} , {a, b, d} , {a, b, e} , {a, d, e} , {b, c, d} , {b, c, e} , {b, d, e} , {c, d, e} ,
{a, b, c, d} , {a, b, c, e} , {a, b, d, e} , {a, c, d, e}, {b, c, d, e}}.
However, τIr = {X,∅, {d} , {e} , {a, e} , {c, d} , {d, e} , {a, d, e} , {b, d, e} , {c, d, e} ,
{a, b, d, e} , {a, c, d, e}, {b, c, d, e}}.
It is clear that there are subsets in I-θβrO(X) that are not members of τIr . For

instance, {a, b, c, d} ∈ I-θβrO(X), but {a, b, c, d} /∈ τIr .

Corrections of some typos in Example 5.1 of [55]:

Example 3.5. All right neighborhoods for each element of

H = {c1, c2, c3, c4, c5}

are given by:

c1R =

5⋂
s=1

c1Rs = {c1, c4}, c2R =

5⋂
s=1

c2Rs = {c2, c5},

c3R =

5⋂
s=1

c3Rs = {c2, c3, c4, c5}, c4R =

5⋂
s=1

c4Rs = {c4}, c5R =

5⋂
s=1

c5Rs = {c5}.

The topology generated by these right neighborhoods is given by:
τr = {H,∅, {c4} , {c5} , {c1, c4} , {c2, c5} , {c4, c5} , {c1, c4, c5} , {c2, c4, c5} ,
{c1, c2, c4, c5} , {c2, c3, c4, c5}}.

According to the Chemistry expert, if I = {∅, {c1} , {c4} , {c1, c4}} is the selected
ideal, then the topology generated by this ideal is given by:

τIr = {H,∅, {c1} , {c4} , {c5} , {c1, c4} , {c1, c5} , {c2, c5} , {c4, c5} , {c1, c2, c5} , {c1, c4, c5} ,
{c2, c3, c5}, {c2, c4, c5} , {c1, c2, c3, c5} , {c1, c2, c4, c5} , {c2, c3, c4, c5}}.

Then we have

I-θβrO(H) = P (H),

where P (H) is the power set of H.

Thus the typos in Table 5 (of Example 5.1) on pages 2492 and 2493
have been corrected in Table 2, which presents a comparison between our
approach and the previous ones in [44] and [56]:

4. New Results on θβ-ideal approximation spaces

This section introduces new results and properties of θβ-Ideal Approximation
Spaces, as initially proposed in [55]. Additionally, we examine their theoretical
framework and illustrate these concepts with examples, offering a more comprehen-
sive understanding of their structure and significance.

9
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Table 1. Comparison of the Boundary Region and Accuracy Mea-
sures Using the Techniques of Abd El-Monsef et al. [44], Hosny
[56], and the Proposed Method (Definition 4.2 [55])

A ⊆ H Abd El-Monsef method M. Hosny method The current method
Br(A) σr(A) BIr (A) σIr (A) BI−θβr (A) σI−θβr (A)

{c1} {c1} 0 ∅ 1 ∅ 1
{c2} {c2, c3} 0 {c2, c3} 0 ∅ 1
{c3} {c3} 0 {c3} 0 ∅ 1
{c4} {c1, c3} 1/3 ∅ 1 ∅ 1
{c5} {c2, c3} 1/3 {c2, c3} 1/3 ∅ 1
{c1, c2} {c1, c2, c3} 0 {c2, c3} 1/3 ∅ 1
{c1, c3} {c1, c3} 0 {c3} 1/2 ∅ 1
{c1, c4} {c3} 2/3 ∅ 1 ∅ 1
{c1, c5} {c1, c2, c3} 1/4 {c2, c3} 1/2 ∅ 1
{c2, c3} {c2, c3} 0 {c2, c3} 0 ∅ 1
{c2, c4} {c1, c2, c3} 1/4 {c2, c3} 1/3 ∅ 1
{c2, c5} {c3} 2/3 {c3} 2/3 ∅ 1
{c3, c4} {c1, c3} 1/3 {c3} 1/2 ∅ 1
{c3, c5} {c2, c3} 1/3 {c2, c3} 1/3 ∅ 1
{c4, c5} {c1, c2, c3} 2/5 {c2, c3} 1/2 ∅ 1
{c1, c2, c3} {c1, c2, c3} 0 {c2, c3} 1/3 ∅ 1
{c1, c2, c4} {c2, c3} 1/2 {c2, c3} 1/2 ∅ 1
{c1, c2, c5} {c1, c3} 1/2 {c3} 3/4 ∅ 1
{c1, c3, c4} {c3} 2/3 {c3} 2/3 ∅ 1
{c1, c3, c5} {c1, c2, c3} 1/4 {c2, c3} 1/2 ∅ 1
{c1, c4, c5} {c2, c3} 3/5 {c2, c3} 3/5 ∅ 1
{c2, c3, c4} {c1, c2, c3} 1/4 {c2, c3} 1/3 ∅ 1
{c2, c3, c5} {c3} 2/3 ∅ 1 ∅ 1
{c2, c4, c5} {c1, c3} 3/5 {c3} 3/4 ∅ 1
{c3, c4, c5} {c1, c2, c3} 2/5 {c2, c3} 1/2 ∅ 1
{c1, c2, c3, c4} {c2, c3} 1/2 {c2, c3} 1/2 ∅ 1
{c1, c2, c3, c5} {c1, c3} 1/2 ∅ 1 ∅ 1
{c1, c2, c4, c5} {c3} 4/5 {c2, c3} 4/5 ∅ 1
{c1, c3, c4, c5} {c2, c3} 3/5 {c2, c3} 3/5 ∅ 1
{c2, c3, c4, c5} {c1} 4/5 ∅ 1 ∅ 1

H ∅ 1 ∅ 1 ∅ 1

Definitions and Preliminary concepts.
Nawar et al. [55] introduced rough approximations based on the class of I-θβj-open
sets. The corrected formulation of these approximations, as refined in Definition 3.1,
is presented in the revised definition below.

Definition 4.1. Let (X,R,ψj) be a j-NS, and let I be an ideal on X. For each
A ⊆ X and for all j ∈ J , the following concepts are defined:

10
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(i) the I-θβj-lower approximation:

RI−θβj (A) =
⋃
{G ∈ I-θβjO(X) : G ⊆ A} = intI−θβj (A),

where intI−θβj (A) represents the I-θβj-interior of A,

(ii) the I-θβj-upper approximation:

R
I−θβ
j (A) =

⋂
{F ∈ I-θβjC(X) : F ⊇ A} = clI−θβj (A),

where clI−θβj (A) represents the I-θβj-closure of A,

(iii) the I-θβj-boundary region:

BI−θβj (A) = R
I−θβ
j (A)−RI−θβj (A).

(iv) the I-θβj-accuracy of the approximations:

σI−θβj (A) =

∣∣∣RI−θβj (A)
∣∣∣∣∣∣RI−θβj (A)
∣∣∣ , where

∣∣∣RI−θβj (A)
∣∣∣ 6= 0.

Reformulation of Results from [55].
We now reformulate certain results from [55] to clarify relationships between the
approximations introduced in Definition 4.1 and those in Definitions 2.10 and 2.11.

Theorem 4.2. Let (X,R,ψj) be a j-NS, and let A ⊆ X. If I is an ideal on X,
then the following statements hold:

(1) Rj(A) ⊆ RIj (A) ⊆ RI−θβj (A),

(2) R
I−θβ
j (A) ⊆ RIj (A) ⊆ Rj(A).

Proof. We will prove the first part, and the second follows similarly.
From Theorem 2.9, we have:

Rj(A) =
⋃
{G ∈ τj : G ⊆ A} ⊆

⋃{
G ∈ τIj : G ⊆ A

}
= RIj (A).

Additionally, from Lemma 3.2, we obtain:

RIj (A) =
⋃{

G ∈ τIj : G ⊆ A
}
⊆
⋃
{G ∈ I-θβjO(X) : G ⊆ A} = RI−θβj (A).

�

Corollary 4.3. Let (X,R,ψj) be a j-NS, and let A ⊆ X. If I is an ideal on X,
then the following statements hold:

(1) BI−θβj (A) ⊆ BIj (A) ⊆ Bj(A),

(2) σj(A) ≤ σIj (A) ≤ σI−θβj (A).

Corollary 4.4. Let (X,R,ψj) be a j-NS, I be an ideal on X, and A ⊆ X. Then
the following statements hold:

(1) each j-exact subset in X is I-θβj-exact,
(2) each I-j-exact subset in X is I-θβj-exact,
(3) each I-θβj-rough subset in X is j-rough,
(4) each I-θβj-rough subset in X is I-j-rough.

11
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Remark 4.5. (1) Based on Theorem 4.2 and its corollaries, the I-θβj-rough set
models serve as generalizations of the methods introduced by Abd El-Monsef
et al. [44] and M. Hosny [56].

(2) As demonstrated in Example 3.5 (presented in Table 1), it is evident that
the converse of these results does not generally hold.

(3) Furthermore, as shown in Example 4.1 of [55], the class of θβj-open sets
(respectively, I-θβj-open sets) constitutes a supra-topological space under a
general binary relation.

(4) Additionally, the following results explore specific cases of relations. No-
tably, they demonstrate that the topologies generated under the condition
of a symmetric relation are quasi-discrete spaces (where every open set is
closed). Consequently, the class of θβj-open sets (respectively, I-θβj-open
sets) forms a discrete topological space.

Lemma 4.6 ([52, 60]). Let (X,R,ψj) be a j-NS. If R is a symmetric relation, then
for each x ∈ X,

(1) y ∈ Nr(x)⇔ x ∈ Nr(y).
(2) Nr(x) = N`(x) = Ni(x) = Nu(x).
(3) N〈r〉(x) = N〈`〉(x) = N〈i〉(x) = N〈u〉(x).

Theorem 4.7. Let (X,R,ψj) be a j-NS. If R is a symmetric relation, then for all
j ∈ {r, `, u, i}, the topology τj is a quasi-discrete space.

Proof. We will prove the theorem for the case of j = r. By Lemma 4.6, the result
extends to the other cases of j.

First, suppose A ∈ τr. Then by Theorem 2.4,

(4.1) Nr(p) ⊆ A for every p ∈ A.
Now, let y ∈ Ac. We consider the following cases:

Case 1: Nr(y) ⊆ Ac. In this case, it follows directly that Ac ∈ τr.
Case 2: Nr(y) ⊆ A. By 4.1, this implies y ∈ A, which contradicts the assumption

y ∈ Ac.
Case 3: Nr(y) ∩ A 6= ∅. This means there exists w ∈ X such that w ∈ A and

w ∈ Nr(y). Since R is symmetric, by Lemma 4.6, we have y ∈ Nr(w). This
leads to a contradiction, as it implies that w ∈ A and Nr(w) ∩ Ac 6= ∅,
which contradicts the assumption in 4.1.

From the analysis of cases (1)-(3), we conclude that Nr(y) ⊆ Ac for every y ∈ Ac,
which implies Ac ∈ τr. Thus τr is a quasi-discrete space. �

Remark 4.8. For any j-NS (X,R,ψj), if R is a symmetric relation, then for all
j ∈ {〈r〉, 〈`〉, 〈i〉, 〈u〉}, the topology τj does not necessarily have to be a quasi-discrete
space, as demonstrated in the following example.

Example 4.9. Consider the symmetric relationR = {(a, a), (a, b), (b, a), (c, c), (d, a),
(a, d)} on the set X = {a, b, c, d}. Thus we have:

So τr = {X,∅, {c}, {a, b, d}} and τ〈r〉 = {X,∅, {a}, {c}, {a, c}, {a, b, d}}.
Theorem 4.10. Let (X,R,ψj) be a j-NS. If R is a symmetric relation, then for
all j ∈ {r, `, u, i}, the class θβjO(X) (resp. I-θβjO(X)) forms a discrete topological
space.

12
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Table 2. r-neighborhoods and 〈r〉- neighborhoods

x Nr(x) N〈r〉(x)
a {a, b, d} {a}
b {a} {a, b, d}
c {c} {c}
d {a} {a, b, d}

Proof. We will prove the result for θβjO(X); the proof for I-θβjO(X) follows sim-
ilarly. From Theorem 4.7, we have intj(A) = clj(A) for every A ⊆ X. Thus every
subset A ⊆ X satisfies A ∈ θβjO(X). This implies that θβjO(X) is the power set
of X. Consequently, θβjO(X) forms a discrete topological space. �

Proposition 4.11. Let (X,R,ψj) be a j-NS. If R is a symmetric relation, then for
all j ∈ {r, `, u, i} and all A ⊆ X,

(1) Rθβj (A) = R
θβ

j (A) = A,

(2) RI−θβj (A) = R
I−θβ
j (A) = A.

Proof. The result directly follows from Theorem 4.10. �

Corollary 4.12. Let (X,R,ψj) be a j-NS. If R is a symmetric relation, then for
all j ∈ {r, `, u, i} and all A ⊆ X,

(1) Bθβj (A) = BI−θβj (A) = ∅,

(2) σθβj (A) = σI−θβj (A) = 1.

Remark 4.13. Proposition 4.11 and Corollary 4.12 highlight a crucial aspect of
our method under a symmetric relation, demonstrating that it surpasses earlier ap-
proaches formulated using topological structures and their extensions. Moreover, the
proposed method is more effective than prior techniques that directly utilize neigh-
borhood systems or those combining neighborhood systems and ideal structures.
The following example illustrates this distinction.

Example 4.14. Consider Example 4.9. We compute the approximations of certain
subsets using θβj-rough sets and I-θβj-rough sets as follows:

Suppose I = {∅, {a}, {c}, {a, c}}. Then the results are:

� Method of Abd El-Monsef et al. (2014):
The generated topologies are:

τr = {X,∅, {c}, {a, b, d}} and τ〈r〉 = {X,∅, {a}, {c}, {a, c}, {a, b, d}}.

Accordingly, the classes of all closed sets are given by:

Γr = {X,∅, {c}, {a, b, d}} and Γ〈r〉 = {X,∅, {c}, {b, d}, {a, b, d}, {b, c, d}}.

Thus it is clear that the only exact subsets are {c} and {a, b, d} in both cases of
j = r and j = 〈r〉.
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� Method of M. Hosny method (2020):
For j = r, the generated topology is:

τIr = {X,∅, {b}, {c}, {d}, {b, c}, {b, d}, {c, d}, {a, b, d}, {b, c, d}}.
Thu, the class of all closed sets is:

ΓIr = {X,∅, {a}, {c}, {a, b}, {a, c}, {a, d}, {a, b, c}, {a, b, d}, {a, c, d}}.
So it is clear that the only exact subsets are {c} and {a, b, d} in the case of j = r.
For j = 〈r〉, the generated topology is:

τI〈r〉 = {X,∅, {a}, {c}, {a, c}, {b, d}, {a, b, d}, {b, c, d}}.
Hence, the class of all closed sets is:

ΓI〈r〉 = {X,∅, {a}, {c}, {a, c}, {b, d}, {a, b, d}, {b, c, d}}.

Therefore, it is clear that the only exact subsets are {a}, {c}, {a, b, d}, and {b, c, d}
in the case of j = 〈r〉.

� Method of θβj and I-θβj-rough sets:

It is evident that for every A ⊆ X, A is an exact subset according to the θβj-
and I-θβj-approaches. This demonstrates that the proposed methods (θβj- and I-
θβj-rough sets) provide greater accuracy than the earlier methods proposed by Abd
El-Monsef et al. and M. Hosny.

To illustrate this, consider the subset M = {a, b, c}. Then, the accuracy measures
of M using the methods of Abd El-Monsef et al. and M. Hosny are as follows:
σr(M) = 1

4 , σ〈r〉(M) = 1
2 , σIr (M) = 2

3 , and σI〈r〉(M) = 1
2 .

In contrast, the accuracy measures of M using the θβj- and I-θβj-rough set methods
are:

σθβ〈r〉(M) = σI−θβ〈r〉 (M) = 1.

5. Algorithmic framework for θβ-ideal approximation spaces

Lastly, we introduce Algorithm 1 outlining the use of our proposed techniques to
assist in decision-making tasks. This algorithm is easily implementable using simple
programming languages like MATLAB, facilitating high-precision medical diagnosis.

Algorithm 1: Determining exactness and roughness using θβ-ideal ap-
proximation spaces

(1) Input Data: Construct the dataset and define the binary relation R on the
set X.

(2) Compute Similarities: Compute the similarity degree

S(x, y) =

n∑
i=1

[ai(x) = ai(y)]

n
,

where n is the number of condition attributes. Construct a similarity table.
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(3) Establish Binary Relation: Define

(x, y) ∈ R⇔ S(x, y) ≥ ε,

where ε is the similarity threshold. Generate a similarity matrix.
(4) Neighborhoods Calculation: Compute all j-neighborhoods Nj(x) for

each x ∈ X.
(5) Ideal Set Selection: Choose an ideal set I based on expert knowledge.
(6) Computation of Topologies: Compute τIj and ΓIj :

τIj = {A ⊆ X : ∀x ∈ A, Nj(x) ∩Ac ∈ I} , and ΓIj = {F ⊆ X : F c ∈ τIj }.

(7) Computation of I-θβj-Classes: Compute I-θβjO(X) and I-θβjC(X)
using Definition 3.1.

(8) Rough Set Identification: For A ⊆ X, compute

RI−θβj (A) =
⋃
{G ∈ I-θβjO(X) : G ⊆ A}.

If RI−θβj (A) = ∅, conclude that A is a rough set.

(9) I-θβj-Accuracy Determination: Compute the upper approximationR
I−θβ
j (A)

and accuracy:

σI−θβj (A) =

∣∣∣RI−θβj (A)
∣∣∣∣∣∣RI−θβj (A)
∣∣∣ , if

∣∣∣RI−θβj (A)
∣∣∣ 6= 0.

If σI−θβj (A) = 1, classify A as exact; otherwise, it is rough.

(10) Decision Outcome: Analyze decision outcomes and validate against bench-
marks.

(11) Adjust Parameters (if necessary): Modify R based on results and re-
peat.

(12) Output Results: Present final results and insights.

Algorithm 1 analysis: The following analysis discusses the effectiveness, efficiency,
and scalability of Algorithm 1.

Effectiveness: The core objective of Algorithm 1 is to distinguish between ex-
act and rough sets by computing binary relations and I-θβj-approximations of j-
neighborhoods. The algorithm achieves high classification accuracy, provided that
precise data and rigorous definitions are used. Its iterative approach, based on well-
established neighborhood computations and I-θβj-accuracy measures (denoted as

σI−θβj ), ensures that each decision is grounded in solid theoretical principles.

Efficiency: The efficiency of Algorithm 1 is dependent on the dataset size. As
the volume of data increases, the complexity associated with binary relation and
neighborhood computations grows. By implementing iterative recalculations in op-
timized programming environments (such as Python or R), the algorithm effectively
manages computational demands. Furthermore, the use of advanced data structures
and memorization (caching) techniques can minimize redundant operations, thereby
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reducing the overall runtime.

Scalability: Although the algorithm’s iterative nature provides a systematic frame-
work for classification, scalability may become a concern for extremely large datasets.
To mitigate this, one can employ strategies such as parallel processing and data
reduction techniques. Modern programming languages, with robust libraries for
handling big data, enable the algorithm to be adapted for real-time or large-scale
applications, ensuring its practical viability across diverse domains, including medi-
cal diagnosis, economic modeling, and beyond.

6. Conclusion

This study advances both the theoretical foundation and practical applications
of θβ-ideal approximation spaces by refining key definitions, introducing new re-
sults, and proposing a comprehensive algorithm for real-world implementation. The
presented framework not only rectifies typographical inaccuracies from our previ-
ous work but also extends and reinforces its theoretical underpinnings, ensuring
greater consistency and scientific rigor. Moreover, our approach generalizes ear-
lier methodologies, including those developed by Abd El-Monsef et al. [44] and M.
Hosny [56], offering enhanced accuracy and broader applicability. By integrating
theoretical innovations with practical examples, we have demonstrated the effec-
tiveness of the refined θβ-ideal rough set models compared to existing techniques.
The proposed mathematical algorithm provides a robust computational framework
adaptable to various programming environments, facilitating its application in fields
such as medicine, chemistry, and economics. This contribution highlights the prac-
tical significance of our study in decision-making contexts.
Looking ahead, future research will focus on further generalizations and the explo-
ration of novel applications in emerging fields, such as generalized multi-granulation
[61], soft nodec spaces [62], and N -Bipolar Soft Expert Sets and their Applications
[38]. These directions aim to address the growing demand for precise data analysis
and advanced decision-support systems. The advancements presented in this pa-
per serve as a foundation for ongoing research in topological and rough set theory,
offering valuable insights for both theoretical progress and practical implementation.
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